Zapoznaj się z poniższymi przykłady Permutacja z powtórzeniem, aby dowiedzieć się, jak obliczać ustalenia w różnych scenariuszach.
Przykład 1: kod PIN
- Problem: ile 4-cyfrowych kodów PIN można utworzyć za pomocą cyfr od 0 do 9?
- Rozwiązanie:
- Dla każdej z 4 pozycji dostępnych jest 10 opcji (cyfry od 0 do 9).
- Ponieważ każdą cyfrę można powtórzyć, łączna liczba kodów PIN wynosi: 𝑛^𝑟 = 10^4 = 10000.
- Odpowiedź: istnieje 10000 różnych 4-cyfrowych kodów PIN.
Przykład 2: rzucanie monetą
- Problem: rzucamy 3 razy monetą. Ile jest możliwych wyników?
- Rozwiązanie:
- Dla każdego rzutu monetą są 2 możliwe wyniki: orzeł lub reszka.
- Ponieważ rzucono 3 razy monetą: 𝑛^𝑟 = 2^3 =8.
- Odpowiedź: w przypadku 3 rzutów monetą istnieje 8 możliwych wyników.
Przykład 3: kombinacja zamków
- Problem: ile różnych 3-cyfrowych kombinacji zamków jest możliwych, jeśli każda cyfra może być dowolną liczbą od 1 do 5?
- Rozwiązanie:
- Dla każdej z 3 pozycji dostępnych jest 5 możliwości (cyfry od 1 do 5).
- Ponieważ każdą cyfrę można powtórzyć, łączna liczba kombinacji zamków wynosi: 𝑛^𝑟 = 5^3 = 125.
- Odpowiedź: możliwych jest 125 różnych 3-cyfrowych kombinacji zamków.